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If one has observed n independent and identically dis-

trbue random vralsXI, ..., 9X, it is often of in-

terest to estimate their mean W = E(XI and variance-
0 2 7: Var(X ). If X 1 has a normal distribution then

S: [i/n and S 2 = (X i-X)2/(n-)

are, respectively, the usual unbiased estimators of w and
Sof o2, and are in many senses optimal estimates. Also, it

is known that

Ydar J. 1dwi-, PhtD

s / vn¢- n

i.e. (9 - )rfs has Student's-t distributon wth n - 1

degrees of freedom, which allows one not only to give a

point estimate of , but also a i 00(1-)n confidence inter-

val on -:

Key Words and Phrases: heteroscedasticity: homoscedasti-
aescity; transformations; unequal variances; inversion;

two-stage sampling; Heteroscedastic Method; multip l t
S tdcomparisonsb; ANOVA.
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tn- < C + tn-l1a -

1 A problem with this interval is that its length,

2t a

is a random variable and cannot be controlled to be (e.g.)

- < 2L by choice of the sample size n. The solution of this

S- problem given below (Section 1) is the base of many solu-

tions to problems of heteroscedasticity.

If X has a non-normal distribution, then X and 52

Sare still unbiased estimators of P and Gi ,respectively.

However, X and S2 are no longer independent random vari-

ables and confidence intervals for i (even with random

&length) are not generally available. Moreover, R and s2

(while each asymptotically normal by the Central Limit

Theorem) are no longer optimal estimators in this setting.

Here transformations are often used, i.e. one lets

Yi z f(X.), 1 < i < n, for some function L(.) such that

U. L(Xl) is normally distributed. Then E(YI ) and Var(Y I ) can

be estimated optimally, and confidence intervals provided.

Methods are available (Section 2) for relating these esti-

mates and intervals back to p and 02, the quantities of

primary interest.

If one has observations from several sources, say

Xil, Xi2, ... (which are independent and identically

Ii'X2 .
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distributed) from source i (i 1, 2, ... , k), interest

is often in the means pi E(Xi1 and variances

i? :Var(Xi). Until recently, the procedures available

for these problems assumed normality and

12 r .. k2  a2 and provided performance characteris-

tics (e.g. power for a test, confidence coefficient or

length for a confidence interval, probability of correct

selection for a ranking-and-selection procedure) which

depended on the unknown a2  The solutions given below for

these problems (Sections 3, 4, 5) do not assume equal var-

iances, and yet do allow full control of such performance

characteristics as power, confidence interval length, and

probability of correct selection.

The procedures given require the experimenter to have

design-control, but generalize to any statistical problem

via the Heteroscedastic Method (Section 6). Problems of

non-normality, comparison with the usual variance-stabili-

zing-transformation approach, and other comparisons and

questions which arise in practical implementation, are

discussed throughout.

1. Basic Sampling Rule &B (no , w).

If we are able to observe independent and identically

distributed normal random variables X1 2 X2 1 ... with mean

ui and variance a2 (both unknown), and wish to make

_ _
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inference about p, let us use the

Sampling Rule % (n0 , w): Take an initial sample

X1 , ..., X of size n0 (> 2), and calculate
0
no no

X (n0 )  : . Xj no, s2  = (XI(X -X (n0))'/(n0-1),
3:i j:l

N = max {nO + 1, [(ws) 2 ]}

where w > 0 (depends on the problem under consideration)

and [y] denotes the smallest integer > y (e.g. [5.1] = 6

... introduced because sample sizes must be integers).

Take N-r additional observations Xn +11 XN and

calculate:
N

R(N-n 0 )  X i /(N-n0),
j=n 0 +l

X bX(n0 ) + (l-b)X(N-n0 )

where
(n N-n0
Nb 1 - no (ws) 2

andN

~ yjX X./N.
j=l

Then Stein showed in 1945 that, for his samplip, rule

1ii "i
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Therefore,

1 1- n~ s U + tniU w

is an exact 100(l-a)% confidence interval for p, and its

half-length can be fully controlled to a pre-set number

L > 0 by taking the arbitrary w > 0 in &B(no, w) such that

t cs L i.e. n L-N o

Note that, since N is an increasing function of w, the

total sample size N required is larger for: smallan half-

length L; as well as for higher confidence 1-a.

The above procedure is valid for any preliminary sam-

ple size n 0 L 2. Since tn0 ll.- decreases as n0 in-

creases, it is reasonable to make no large if possible.

However, the decrease is negligible after n0 > 12 or so,

hence it is reasonable to take n0 =12 (or larger if one is

sure to, e.g., take n0 > B for some positive integer

B > 12).

The validity of the procedure for any nO (with no

"optimal" choice of n0 being obvious) bothered early work-

ers in the field and led to dis-use of these early proce-

dures. The above realization that n o > 12 is all that is

required for good results in practice as far as n is con-

cerned is a factor leading to great current interest in

$
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these procedures and their extensions (sections to follow

below). One may think of the situation as follows: one's

total sample size N is approximately w 2 s2 , an-' taking nr
very small will force a large total sample size simply-,

cause of a poor initial estimate S2. E.g., see Table 1.

2. Basic Non-Normality and Transformations.

if XIin Section 1 is non-normal, one oft-en uses Such

transformations as

2 X 1 ) =X11/3

YYX 1  = 1og10 (x1 )

(X =arcsin V'7
4 ~ 1Z

E5 (X 1 ) =sinh-
1 vR7,.

If one of these, say E(X 1) is normally distributed, then

the mean and variance of Y. & (Xi) may be estima-red by

n .n n

However, interest in many cases is not in EE(X- ) and

Var&(X 1 ), but in the original problem unilts, i.e. EX I and-

Var(X1) Simply using the inverse transformaticn, e.g.

estimate EX1 by

y2 + a

in the case of Cl, results in a biased estimate. However,

J. Neyman and E. L. Scott showed in 1960 that the unique
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minimum variance unbiased estimators of ECX) are as in

Table 2. General results for second order entire functions

were also given by Neyman and Scott.

In 1968 M. H. Hoyle provided the IIVUE's of Var(,X)

and, more importantly, of the variances of the estimators

of EX' given in Table 2; see Table 3. These latter can

be used to obtain approximate 95% confidence intervals for

EX1 , e.g. when using v'x-,a
1

UE:c72 +a+(1_.) S2 +2112 V2+S4 {( _1)__-(

n Y n ~nY ~Y n J +lT nL

41J
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1 3. Heteroscedasticity (Several Sources): Tests.

If Xil, Xi 2 , ... are independent and identically dis-

1 tributed normal random variables with mean pi and variance

ai2 (i 1, 2, ... , k), then one talks of homoscedasticity

if 012 a.. 2 = o, and of heteroscedasticity otherwise.

- Experimenters have often been cautioned that "the assump-

tion of equal variability should be investigated" (e.g. by

Cochran and Cox in 1957, by Juran, Gryna, and Bingham in

1974), but no exact statistical procedures have been avail-

able for dealing with cases where one finds that variabili-

ties are in fact unequal. (A variance-stabilizing trans-

formation is commonly employed, e.g. arcsin for binomial

data; however, if X.. is normal, then (Xi.) will be non-

normal: the transformation method has not been developed

I to handle this problem except in special cases, and even

there one deals not with the parameters jl' ... , pk of

basic interest if one uses such a transofrmation, but

rather with some transform whose meaning, i.e. interpreta-

bility, will not often be clear. We do not therefore re-

I gard transformations as of general use in cases of k > 2

when l "Pk are parameters of natural interest (not

arbitrary parametrizations).)
It was first developed in the 1970's by EJ. Dudewicz

that, applying sampling procedure 8B(n0 , w) of Section 1

separately to each source of observations, one would obtain
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the ability to fully control the performance characteris-

4
tics of statistical procedures even in the presence of

heteroscedasticity. Let 7. denote the result of applying

the sampling procedure to Xil, Xi2 , ... (i = 1, 2, ... , k).

In the case k = 1 one can develop procedures (as in Section

2) using 7, but if one replaces this by X at the end then

*the procedure is still valid. In fact, it has slightly

better performance characteristics (higher power) , and is

even simpler (7 being simpler than X, the latter being a

random-weighted combination of the sample means of the

first and second stages of sampling). However, this im-

provement is not large: approximately the amount that

increasing sample size from N to N + 1 will buy (one ob-

servation's worth). This improvement of 7 over R has been

shown to not hold in most situations where k > 2: 4n most

such cases if XI1 "' Xk are used to replace k

then the procedure no longer has the desired performance

characteristics.

We will describe the new ANOVA procedures in the con-

text of the one-way layout; similar procedures are avail-

able for higher-way layouts. In the one-way layout, we

might want to test the null hypothesis

"" 0: 1 : 2 : ' k"H.:i l -

Define

.I- .- p.
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Ic 4

A. k
F = w'(R i  R. .2

where

4K 1

and reject H0 if and only if

F > Fkn

where F is the upper a percent point of the null dis-
0k,n0

tribution of F. This null distribution is the same as that
k

of the random variable Q : (t.-T) 2 wh.re the {t i } are

independent identically distributed Studen:'s-t variates
k

with n0 -1 degrees of freedom and t. (/k) . t i.

Values of F a obtaine by a Monte Cirlo sampling

experiment, along with the power attained it various alter-

natives measured by 6 : [ Ci-Y.)2 , for virious given

I/w 2 values, are presented in Bishop and D'dc:,icz (1978).

There is a need for approximations to the )ercentage points

of the F statistics under the null and altrnative distri-

butions. Such approximations are available in the general

setting (see Dudewicz and Bishop (1979)), and have been

studied as to goodness in special cases (s~e Bishop,

Dudewicz, Juritz, and Stephens (1978)). Crnsider first

the distribution of F as n0 - . This limhting distribu-

tion is noncentral chi-square with k-i degrees of freedom

[
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k
and noncentrality parameter A : w 2 ( i-I.) 2 denoted by

2x (A). However numerical results indicate that for.-. Xk- 1

small no the tails of this limiting distribution are too

light to give a good approximativn. One therefore approxi-

mates by a ((n0 -l)/(n 0-3)) X_1(A) random variable (in

which case F and its approximating distribution have the

same expected value under Ho).

. Let us illustrate with a numerical example. Suppose

we wish to test the hypothesis that 4 different chemicals

are equivalent in their effects. Suppose we decide to

take initial samples of size 10 with each treatment, want

only a 5% chance of rejecting H0 if in fact H 0 is true,

and want an 85% chance of rejecting H0 if the spread among

p1 , 12' 3' 14 is at least 4.0 units. We then proceed,

step by step, as follows.

t. Step 1. (Problem specification.) Here there are k = 4

sources of observations, we desire an a = .05 level test of

H0: 1i = W 3 = P4, and if the spread among pi, P2  'J3

P4 is 6 = 4.0 units or more we desire power (probability
of then rejecting the false hypothesis H0 ) of at least

P* = .85.

Step 2. (Choice of procedure.) Assuming we do not know

that a = o = C24 only procedure a (n,, w) can

guarantee the specifications. It requires we sample n0
observations in our first stage, and recommends no

I
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be at least 12 (though any no > 2 will work). Suppose the

experimenter only wants to invest 40 units in first-stage

experimentation and sets n0  10.

Step 3. (First stage.) Draw n0  10 independent observa-

tions from each source, with results as in Table 4.

Table 4. First Stage Samples.

Chemical 1 Chemical 2 Chemical 3 Chemical 4

77.199 80.522 79.417 78.001

74.466 79.306 78.017 78.358

82.746 81.914 81.596 77.544

76.208 80.346 80.802 77.364

82.876 78.385 80.626 77.554

L 76.224 81.838 79.01i 75.911

78.061 82.785 80.549 78.043

76.391 80.900 78.479 78.947

76.155 79.185 81.798 77.146

78.045 80.620 80.923 77.386

Step 4. (Analysis of first stage data.) We now calculate

the first stage sample variances s , s 2, s2, the total

sample sizes needed from the four sources NI, N2 , N3P N4,

and the factors bl, b 2 , b3, b4 to be used in the second

stage analysis. The s?'s are given in Table 5, along with
I

the other quantities. The w needed is found as follows.
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We desire power P* .85 (Step 1 above) when
w2 62  w2 (4.0) 2  4.Ow

.- A = = ~ " -4 _0__

4 4

To set w for this power requirement, we first need to know

"When do we reject?". We know we will later reject H 0 if

F > F.,0 where, approximately,
4,10

.0 n 0 _3 (7.81) = 10.04.
4,10 n -

The 7.81 is the value a central chi-square random variable

with k - 1 = 4 - 1 = 3 degrees of freedom exceeds with pro-

bability a = .05 (see standard tables, e.g., p. 137 of

Pearson and Hartley (1970) or p. 459 of Dudewicz (1976)).

The power will be,approximately,

PX2 (A) > 7.811 = .85

[i if (see p. 53 of the tables in Haynam, Govindarajulu, and

LLeone (1970))
A = 12.301

so
w 2  12.301 3.075.

4.0

I.

I
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ITable 5. Analysis of First Stitge.

Chemical 1 Chemical 2 Chemical 3 Chemical 4

n 010 10 10 10

Sample Mean 77.837 80.580 80.i22 77.625

7.9605 1.8811 1.7174 .6762

w 1.754 1.754 1.754 1.754

N. 25 11 11 11

b. .330 .936 .939 .9E9

Step 5. (Second stage.) Draw N.i - no observations from

source i i 1, 2, 3, 4), yielding Table 6.

Table 6. Second Stage Samples.

Chemical 1 Chemical 2 Chemical 3 Chemical 4

82.549 79.990 80.315 78.037

78.970

78.496

78.494

80.971

80.313

76.556

80.115

78.659

77.697

80 .590

79.647

82.733

80.552

79.098



Step 6.- (Final calculations.) We now cal,-ulate the an

F, and find

X I 79.079 2 80.688, X3  -80.197, X4  77.597

X. =79 .390

F 17.38

Step 7. (Final Decision.) Since F 17.33 exceeds

F 4 ,1 0 =10.04, we reject the null hypothesis and decide the

~7I chemicals differ.

4. Heteroscedasticity (Several Sour--es): Confiden,:e

Intervals.

The case of a confidence interval with k = 1 mean was

considered in Section 1. When k 2, a two-sided confidence

interval of half-length L >0 and with confidence coeffi-

cient 1-at is given by

H( 1- 2) L < P1- P2 (X1 -R 2) 4+ L

if we choose (in 9B (no, w))

C 1 a (n 0)

L

where c is tabled in Table 7.
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Table 7. C1- (no)"

no
l0 11 12 13 14 15 20 25 30

.75 1.03 1.02 1.02 1.01 1.01 1.00 .99 .98 .98

.80 1.29 1.28 1.27 1.26 1.26 1.25 1. 24 1.23 1.22

.85 1.60 1.59 1.57 1.56 1.56 1.55 1.3 1.51 1.51

t .. 90 2.00 1.98 1.96 1.95 1.94 1.93 1.90 1.88 1.87
.95 2.61 2.58 2.56 2.53 2.52 2.50 2.45 2.42 2.41

.975 3.18 3.13 3.09 3.06 3.04 3.02 2.95 2.91 2.88

S.99 3.89 3.82 3.76 3.71 3.67 3.64 3.54 3.48 3.45

.995 4.41 4.31 4.24 4.18 4.13 4.09 3.96 3.89 3.85

.999 5.61 5.45 5.32 5.22 5.14 5.07 4.86 4.74 4.67

Note that the corresponding test solves the Behrens-

Fisher problem exactly in two stages, with controlled level

and power.

For k > 2, multiple-comparison procedires are also

available for many of the usual multiple-c )mparison confi-

dence interval goals.

5. Heteroscedasticity (Several Sour:es): Ranking and

Selection

Here k > 2 and we wish to select (indifference-zone

formulation) that source with mean value max (' " Pk) "

Let [I] -] denote the ordered values of

l1' ... "k; thus W[k] denotes max (i1' Ik , etc..

mI
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The performance characteristic of interest is the probabi-

lity that we will make a correct selection (CS), i.e. that

the population actually selected is the one which haS mean

"[k] . Following Bechhofer (1954), we require that our

P(CS) have at least a specified value P* (1/k < P* < 1)

whenever the largest mean is at least 6* (0 < 6*) more than

the next-to-largest mean; i.e. we require

P(CS) > P* whenever '[k] - [k-1] "

This problem was considered by Dudewicz and Dalal (1975).

The procedure is to select that source which yields the

largest of i "' X, i.e.

Select i iff Xi = max(R1  ... X) "

In the sampling rule %B(n0 , w) one chooses

Icp,(n 0 )

where cp*(n0 ) (for specified values of P* and n.) is tabled

in Table 7 for k = 2, and is tabled in Dudewicz, Ramberg,

and Chen (1975) for k > 2. Approximations for k > 25 are

given by Dudewicz and Dalal (1975). Subset-selection pro-

cedures are also available there.

P..p

J
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- 6. The Heteroscedastic Method.

The above special-case solutions have been placed into

a general theory with the Heteroscedastic iethod of Dudewic:

and Bishop (1979). In a general decision-theoretic setting,

they show how to develop procedures like the above in any

problem. It is also shown that no single-stage procedure

can solve most such problems.

Some questions one might ask about the procedures thus

produced are as follows. First, how do they perform under

violation of normality? Here, Iglehart (1977) has shown,

in some computational settings, that replacing s2 by a jack-

knife estimator is sufficient to preserve the main proper-

ties of the procedures. Other recent work (Dudewicz and

van der Meulen (1980)) shows asymptotic validity under

asymptotic normality. Second, are they preferable to com-

parable sequential procedures? Here it should be noted

* that in most cases there are no "comparable" sequential pro-

cedures: the sequential procedures of Chow-Robbins type

usually mentioned only have asymptotic validity even under

exact normality, while the IB(nO, w)-based two-stage proce-

dures have exact known properties. It is sometimes claimed

that the sequential procedures are more efficient, but this

is only as (e.g.) of + 0. The so-called inefficiency of

!tB(n 01 w) in this situation is due to the fact it then

requires N = 0 +1 (since N > n0 +l always) and in fact (as
i
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a 0) an N * 1 will suffice. This appears to have

little practical relevance, as one usually knows trivial

sample sizes will be insufficient for one's problems; it

is rather a curiosity of mathematical interest only.

As a final note, we mention that while variance-

stabilizing transformations and other approximate methods

have existed for many years, most experimental situations

are such that the problem is far from solved by these

approximate methods. For example, such methods misallocate

sample size by taking the same sample size from a treatment

with relatively small variability, as from a treatment with

relatively large variability, even though the need for ob-

SL servations on the latter is substantially greater and they

have a greater beneficial effect on performance character-

istics of the overall analysis. Also, procedures based on

V B(nO, w) behave acceptably even if variances are equal,

hence the equality of variances tests, which are known to

be weak in power, can be skipped and these new procedures

applied directly without regard to equality or inequality

of variances.
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